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a b s t r a c t

A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating

neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA;

taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training

the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD

index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since

SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the

training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-

processing phase, the clusters are merged into lesion and background skin, yielding the segmented

dermoscopy image. A series of experiments on the proposed model and the other automatic

segmentation methods (including Otsu’s thresholding method, k-means, fuzzy c-means (FCM) and

statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and

segmentation results.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Malignant melanoma (MM), the most deadly form of skin
cancer, is one of the most rapidly proliferating cancers in the
world, with an estimated annual incidence of 70,230 and 8790
deaths in the United States in 2011 [1]. In China, the incidence of
MM has increased 3%–8% annually and has doubled over the past
decade [2]. The earlier the diagnosis, the lower the metastatic risk:
investigations have shown that the cure rate is nearly 100% if the
skin cancer is recognized early enough and treated surgically [3].

Advances in dermoscopy (skin-surface microscopy or dermato-
scopy) technology have contributed significantly to improved
detection and survival rates [4,5]. Dermoscopy [6] is a non-
invasive technique that combines optical magnification and liquid
immersion with angle-of-incidence lighting or crosspolarized light-
ing to make the contact area translucent, consequently revealing
subsurface structures of the skin. Dermoscopy yields 10%–27%
higher sensitivity than clinical diagnosis, significantly improving
the accuracy of dermatologists when diagnosing melanoma [4,5].
Yet, dermoscopic diagnosis remains subjective and is therefore
associated with poor reproducibility. Because of this there has been
a significant increase in interest in the development of automatic
ll rights reserved.
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digital dermatoscopic image analysis methods over the last decade.
Such processes typically consist of four stages: image acquisition,
lesion segmentation or border detection, feature extraction, and
classification. The segmentation stage is quite important, since it
affects the accuracy of the subsequent steps. However, segmenta-
tion is quite difficult because [7]: (i) the transition between the
lesion and the surrounding skin is usually of low contrast; (ii) the
lesion borders are usually irregular and fuzzy; (iii) complicating
artifacts are often present such as skin texture, air bubbles and
hairs; and (iv) the interior of the lesion may exhibit variegated
coloring.

To address these problems, a number of dermoscopic segmen-
tation algorithms have been developed [8]. For convenience, we
broadly classify these into three categories: thresholding, edge/
contour-based and region-based. An effective thresholding
method proposed by Grana et al. [9] uses Otsu’s threshold to
automatically segment the melanoma image, then selects k points
for spline-based interpolation, yielding a smoothed lesion border.
Thresholding methods such as this can achieve good results when
there is good contrast between lesion and skin, but encounter
problems when the modes of the two regions overlap. Edge/
contour-based approaches were used in [10,11]. Rubegni et al.
[10] segmented dermoscopy images using the zero-crossings
of a LoG edge operator, while Zhou et al. [11] used an improved
snake model to detect lesion borders. Edge and contour-based
approaches perform poorly when the boundaries are not well
defined, for instance when the transition between skin and lesion
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Fig. 2. Coarse segmentation with region growing. (a) Original image, (b) Region

growing and (c) Filtering small sub-regions.
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is smooth. In such situations, the edges have gaps and the contour
may leak through them. Region-based approaches have also been
used. Some examples include multi-scale region growing [12],
fuzzy c-means based on anisotropic mean shift [13], multi-
resolution markov random fields [14] and statistical region
merging (SRM) [7]. Region-based approaches have difficulties
when the lesion or the skin region are textured, or have different
colors present, which can lead to over-segmentation.

With the increasing availability of methods for segmenting
dermoscopic images of skin lesions, the relative performances of
the various models are of interest. In [15], four widely used color
clustering algorithms were compared: median cut, k-means,
fuzzy c-means and mean shift, without employing any spatial
constraint. The mean shift algorithm gave the best results. In [16],
six methods were compared: gradient vector flow (GVF), a level
set method of Chan (C-LS), adaptive thresholding (AT), adaptive
snakes (AS), EM level sets (EM-LS), and a fuzzy-based split-and-
merge algorithm (FBSM). The authors concluded that the best
semi-supervised methods are AS and EM-LS, while the best fully
automatic method is FBSM.

Color is a significant feature for image segmentation and
unsupervised color clustering has been successfully used for
region-based segmentation [17]. Such data-driven methods have
great potential for dealing with varied imaging situations, pro-
vided that an accurate model that is flexible enough to span the
space of possible lesion image environments can be found. Since
modeling such a high-dimensional complex space of possibilities
is quite difficult, learning-based methods that can be trained on
large datasets are of interest. Towards this end, we study and
develop a color clustering model for dermoscopic images that
combines the technique of the self-generating neural network
(SGNN) [18] with genetic algorithms (GA). Using a measure of
cluster validity, the clustering algorithm that we develop auto-
matically determines an appropriate number of clusters. By
merging the clustering regions into lesion and background skin,
segmentation of dermoscopic images is achieved. When com-
pared with other segmentation algorithms that use Otsu’s thresh-
olding method, k-means, fuzzy c-means and SRM, our model is
shown to deliver high-quality segmentation results.
2. Self-generating neural networks (SGNN)

We briefly describe the learning tool that we will use. SGNN
was developed in 1992 [18] using the idea of self-organizing
maps (SOM) implemented within a self-generating neural tree
(SGNT) architecture. It was studied in depth in [19,20], and is
characterized by simplicity in network design, and speed of
learning and self-organizing capability. As such, it is a good choice
to learn clustering or classification with high performance [21].

As shown in Fig. 1, the SGNN can be implemented as a self-
generating hierarchical neural tree (SGNT). Fig. 1(a) depicts a
clustering sample set, where ei,i¼ A,B, � � � E are the sample attri-
butes. Fig. 1(b) is the generated SGNT following the SGNT
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Fig. 1. Structure of the SGNT. (a) 5 samples and (b) Generated SGNT for (a).
generating rules [18–21], where wi notes neuron weight. Each
leaf neuron corresponds to one or multiple samples, and its
weight is the average attribute of the corresponding samples.
The weight of every node neuron (non-leaf neuron) is the average
attribute of all the leaf neurons it covers. Taking each child of the
root neuron as a cluster center, each leaf neuron in the sub-
network rooted by this child belongs to the same cluster. The
number of clusters is consequently equal to the number of the
root neuron’s children. In Fig. 1(b), A is in the same cluster as B,
and C is in the same cluster as D and E, while the number of
clusters in the SGNT is 2. By taking image pixel values as the data,
and color or location information as sample attributes, the SGNN
can be used for image clustering.

For image segmentation purposes, the SGNT structure
becomes excessively large if all pixels are trained. To reduce the
complexity, we deploy a coarse-to-fine segmentation strategy.
The region growing method is used to coarsely segment the
original image. The image is scanned and the unlabeled pixels
are taken as seeds. The pixel neighbors whose mean color has a
distance less than 15 to the seed pixel color, are added to the
region. Fig. 2(b) is the sub-regions segmented by region growing
method, and very small regions are removed in Fig. 2(c); the size
of these can be taken to be a small faction of typical lesion size.
Using these sub-regions as the data set, the clustering task is well
adapted to learning by the SGNN.
3. Automatic segmentation based on SGNN and GA

In spite of its fitting capacity for clustering, the SGNN algo-
rithm is influenced by the input order of the training samples,
which can cause inconsistent clustering results, as depicted in
Fig. 3, where Fig. 3(a) is the original image, and Fig. 3(b) and
(c) are the results that are arrived at when different samples are
selected as the first input into the SGNT.

In Fig. 3(b), the area of the lesion is under-segmented, whereas
a more accurate result is obtained in Fig. 3(c). To ameliorate this,
we propose an adaptive clustering algorithm, termed ACluster-
GA-SGNN, wherein the SGNT is generalized to a Self-Generating
Neural Forest (SGNF), and GA is subsequently employed to
consistently select an appropriate group of seed samples as the
first input into the SGNF, thereby yielding optimized clustering
results.

3.1. Self-generating neural forest

The SGNT can be generalized to a Self-Generating Neural
Forest (SGNF) as follows. Suppose that a given sample set has c

cluster centers. Then the SGNF generating algorithm can be
described as follows:

Step 1: Remove c seed samples randomly from the sample set,
treating these seeds as initial neural trees to form an initial
forest.



Fig. 3. Different clustering results using SGNN with different input order of samples.

(a) Original image, (b) Clustering result 1 and (c) Clustering result 2.
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Step 2: Generate neuron nj for sample i, then search each SGNT
in the SGNF to find the neuron nwin at the shortest distance
from neuron nj.
Step 3: Connect the nj into the SGNT covering the neuron nwin.
Step 4: Repeat Step 2 and Step 3 until all samples are input into
the SGNF.

The generated SGNF includes c SGNTs, each SGNT corresponding
to a cluster, and all the leaf neurons in a SGNT belong to the same
cluster. Whereas, the number of clusters based on SGNF is user-
specified.

The clustering results derived from the SGNF generating algo-
rithm are influenced by the c seed samples used to generate the
initial neuron forest. Suppose we partition the sample set X into c

clusters X1,X2, � � � ,Xc; then their cluster centers are m1,m2, � � � ,mc

respectively, and the between-class variance can be estimated

s2
BðX1,X2, � � � ,XcÞ ¼

Xc�1

i ¼ 1

Xc

j ¼ iþ1

pipjðmi�mjÞ
2

ð1Þ

where pi¼ni/n, ni is the number of pixels for cluster Xi, and n is the
total number of pixels. For an RGB image, ðmi�mjÞ

2 is given by

ðmi�mjÞ
2
¼
X3

q ¼ 1

ðmq
i �mq

j Þ
2

ð2Þ

where mq
i is the value of the ith cluster center in the qth color band.

According to the idea behind Otsu’s thresholding method [22],
the higher the between-class variance s2

B, the more accurate the
partitioning of the sample set. Clustering with maximum s2

B

should subsequently yield an optimal partitioning of the sample
set. In this context, the selection of the c seed samples can be
modeled as an optimization problem.

Given n samples (pixels) in the data set, label them 1 to n,
letting xi; i¼1,y, c be the label numbers on the c seed samples.
Then the xi should satisfy two constraints
(1)
 xiA{1,y, n}.

(2)
 xiaxj if ia j.
There will be many collections of c samples that meet the
above two constraints for a given sample set. Amongst these, the
selection scheme having maximum s2

B over the cluster partition
obtained from the SGNF, is taken to be the optimal one.

As described next, by taking s2
B as the fitness function, the GA

is used to search for the c seed samples to optimize the clustering
solution.

3.2. Genetic algorithm (GA)

GAs [23,24] are efficient and robust adaptive search techniques
based on the idea of natural selection. The relevant steps of GA are:

Step 1: Randomly generate an initial population G(0).
Step 2: Evaluate the fitness f(m) of each individual m in the
current population G(t).
Step 3: Execute genetic operators including selection, crossover
and mutation.
Step 4: Generate the next population G(tþ1) using genetic
operators.
Step 5: Return to Step 2 until the maximum of the fitness
function is obtained.
3.2.1. Chromosome coding and fitness function

Here a chromosome is coded by a c-integer string chrom¼

(g1, g2,y, gk) where the gi, i¼1,y, c, are the genes taking the label
numbers of the appropriate sub-regions as shown in Fig. 2(c). The
c genes denote the selected seed samples with which the SGNF
can be generated and the clustering image obtained. Following
the constraints in Section 3.1, the values of the genes gi, i¼1,y, c

are different from each other.
The between-class variance s2

BðX1,X2, � � � ,XcÞ is used as a
fitness function to evaluate the goodness of a chromosome. For
a given chromosome, execute the SGNF generating algorithm
using the c seed samples (genes) to obtain the image partition,
then calculate the value of s2

B. The higher the value of s2
B, the

better the chromosome quality is assumed to be. The chromo-
some having the maximum value of s2

B is taken to be the optimal
one in the population.

3.2.2. Genetic operators

The selection process copies individual strings into a tentative
new population, called the mating pool, for genetic operations.
The number of copies that an individual receives for the next
generation is usually taken to be directly proportional to its
fitness value, thereby mimicking the natural selection procedure.
We utilize the ‘‘roulette wheel’’ selection approach.

The main purpose of crossover is to exchange information
between randomly selected parent chromosomes by recombining
parts of their genetic information. For simplicity, single-point
crossover is used here. The probability of crossover pc is set to fix
the crossover rate, which is usually about 70%.

Mutation is the process by which a random alteration in the
genetic structure of a chromosome takes place. Its main objective
is to introduce genetic diversity into the population. Single-point
mutation is used here. The probability of mutation pm should
usually be set fairly low. If it is set to high, the search will turn
into a primitive random search.

The elitist strategy is applied after the genetic operations. The
two ‘‘least fit’’ members of the new generation are replaced by the
two ‘‘most fit’’ members in the current population. This guaran-
tees that the fitness never declines from one generation to
the next.

3.2.3. Termination criteria

We use very simple termination criteria: (i) when a plateau is
reached whereby successive iterations no longer produce better
results, and (ii) a fixed number of generations is reached.

3.3. Adaptive clustering based on GA and SGNN (ACluster-GA-SGNN)

When GA converges, c optimal seed samples are obtained by
decoding the fittest individual in the population. The optimal
clustering result is achieved by SGNF generated from the c seed
samples. By example, selecting 2 samples to be seeds via GA, the
clustering result for Fig. 2(a) using SGNN is shown in Fig. 4, where
the samples are the sub-regions from the coarse segmentation in



Fig. 4. Clustering result for Fig. 2(a) based on SGNN and GA (the number of

clusters is specified by the user).

Fig. 5. Clustering results using ACluster-GA-SGNN (the number of clusters is auto-

matic determined by the algorithm). (a) Original image and (b) Clustering result.
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Fig. 2(c), and the sample attributes consist of RGB colors and
spatial location.

In the result depicted in Fig. 4, the number of clusters was
user-specified. However, since such a priori information about the
number of clusters in dermoscopy image is difficult to obtain, the
clustering algorithms should be able to automatically determine
this value. This problem can be addressed using indices of cluster

validity. Cluster validity indices are commonly used for clustering
evaluation and selection of optimal clustering schemes. A number
of validity indices have been introduced, e.g., the Davies–Bouldin
(DB) index [25], Dunn’s index [26], and the SD index [27]. Most
validity indices are based on two criteria: Compactness, where the
idea is that the members of each cluster should be as close to each
other as possible, and Separation, meaning, the clusters should be
widely spaced. We utilize the SD index to determine the proper
number of clusters.

The SD index is based on measurement of the scattering of
clusters and the separation between clusters. Let sðXÞ be the
variance of data set X and sðmiÞ be the variance of cluster i. Then
the scattering of clusters and the separation between clusters are

ScatðcÞ ¼
1

c

Xc

i ¼ 1

JsðmiÞJ=JsðXÞJ ð3Þ

DisðcÞ ¼
Dmax

Dmin

Xc

i ¼ 1

Xc

j ¼ 1

Jmi�mjJ
ð�1Þ

ð4Þ

where c is the number of clusters, Dmax ¼maxðJmi�mjJÞ

andDmin ¼minðJmi�mjJÞ are the maximum and minimum dis-
tances between cluster centers, respectively. The SD index is then

SDðcÞ ¼ aScatðcÞþDisðcÞ ð5Þ

where a¼Dis(cmax) is a weighting factor, where cmax is the
maximum number of input clusters.

Suppose the number of clusters for a given dermoscopic image
lies between 2 and cmax, then calculate the SD index for every c

using Eq. (5). Then the optimal number of clusters can be
determined

cn ¼ argmin
c

SDðcÞ ð6Þ

Using ACluster-GA-SGNN, the number of clusters can be
determined adaptively, and the clustering task completed auto-
matically. Fig. 5 shows an instance of adaptive clustering by
ACluster-GA-SGNN on a malignant skin tumor image.
3.4. Automatic segmentation using GA and SGNN

(ASegment-GA-SGNN)

The number of clusters varies across dermoscopy images, and
the clustering image often includes more than two sub-regions
that can be used for subsequent feature extraction and lesion
segmentation. Features such as the number of clusters, the color
and texture in each sub-region, and so on are important informa-
tion for lesion classification. Actually, segmentation must be done
before feature extraction, since the purpose is to determine those
regions belonging to the lesion object and to detect the lesion
border because firstly, the resulting border structure provides a
basis for the calculation of important clinical features, such as
lesion size and symmetry axes; and secondly, it is crucial for the
extraction of some of the most discriminating dermoscopic
features, such as radial streaming and pseudopods [8].

We place the focus on the segmentation of a lesion from its
surrounding skin. Generally, the background skin region is
brighter than the lesion region and will touch the image frame.
Therefore, for an image with cZ2 clusters, the brightest cluster
located at outer area in the image is taken as background skin,
and the darkest cluster is as the lesion object firstly. And then, the
rest clusters Xið1r irc�2Þ satisfying one of the following two
items are merged into background skin.
(1)
 Ibackground�IiokIðIi�Ii�1Þ, if Iio Ibackground, where IiðIio Iiþ1Þ is
the mean intensity of cluster Xi, and Ibackground is the mean
intensity of the first background skin cluster, and 0okI o1 is
a coefficient (we simply use kI ¼ 1=2).
(2)
 touching FramePi4kpborder Pi, if 9Ibackground�Ii9o20, where
touching Frame Pi is the number of pixels of cluster Xi touching
the image frame, border Pi is the number of border pixels of Xi,
and 0okpo1 is a coefficient (we simply use kp ¼ 1=4).
According to this merging schame, the clusters whose mean
intensity is close to that of the brightest cluster and that have
borders touching the image frame, will be merged into back-
ground skin. Fig. 6 is the segmentation result for Fig. 5(a), where
Fig. 6(a) is the merging result for Fig. 5(b), and the red line in
Fig. 6(b) is the border extracted from Fig. 6(a). This merging step
is post-processing on the ACluster-GA-SGNN, so we call the
proposed segmentation algorithm Segment-GA-SGNN.
4. Experimental results and analysis

We conducted a series of experiments using VCþþ6.0 on a
Win7 OS with i5 3.1 GHz dual-core CPU and 2 GB RAM. There are
two image datasets, one is of caucasians from [28], composed of
125 dermoscopy images including 68 malignant and 57 benign
cases, with size from 227� 252 to 512� 768; the other one is of
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xanthous race from the General Hospital of the Air Force of PLA of
China, composed of 181 images including 53 malignant and 128
benign, with size from 560� 560 to 560� 752. We removed hair
from the images using the method in [29]. Regarding the GA
parameters, the population size is 25, the crossover probability pc

and the mutation probability pm were taken to be 0.6 and 0.08
respectively, and the maximum number of generations is 40.
Analysis is carried out with respect to the following three aspects:
4.1. Experiment 1: Clustering performance of ACluster-GA-SGNN

The ACluster-GA-SGNN model is compared against two widely
used color clustering algorithms: k-means and FCM. For k-means
and FCM, the number of clusters is specified by the user, and a
filtering operator is carried out to remove noise. For the sake of
fairness, the number of clusters for ACluster-GA-SGNN is specified
by the user also. Fig. 7 is a group of clustering results, the first two
rows are xanthous race images, and the last two rows are
caucasian race images. It may be seen that when the contrast is
large between the lesion object and its surrounding skin, and the
lesion has a homogeneous texture and clear edge, then all three
Fig. 7. Clustering results by three methods. (a) Original image, (b

Fig. 6. Segmentation results using ASegment-GA-SGNN. (a) Segmentation result

and (b) Extracted border.
methods deliver a reasonable clustering result. When the object
has no regular edges, shape or uniform color, and the contrast is
reduced between the lesion object and its surrounding skin, then
our model yields a more satisfying result.

The Jaccard and Minkowski scores are calculated in order to
evaluate the accuracy of clustering [30,31]. Let T be the ‘true’
solution and C the solution a clustering algorithm generated. Let
n11 be the number of pairs of data that are in the same cluster in
both T and C. Let n10 be the number of pairs that are in the same
cluster only in T , and n01be the number of pairs that are in the
same cluster only in C. Then the Jaccard score is defined as

SJðT,CÞ ¼
n11

n11þn10þn01
ð7Þ

A higher value of SJðT,CÞ indicates a better clustering result;
the Minkowski score is defined as

SMðT ,CÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n01þn10

n11þn10

r
ð8Þ

The smaller the SMðT ,CÞ score, the better the solution is.
We computed the mean and deviation values of SJðT ,CÞ and

SMðT ,CÞ on the caucasian and the xanthous datasets respectively.
Table 1 states these results. From Table 1, FCM gives the lowest
accuracy for both caucasian and xanthous dataset, k-means gives
the best accuracy for the caucasian dataset, and ACluster-GA-
SGNN gives the best clustering accuracy for the xanthous dataset.
This follows since, when the number of clusters is specified, k-
means can yield good accuracy, but when the image has weak
contrast or variational color, ACluster-GA-SGNN can give more
accurate results.

4.2. Experiment 2: Correctness of determining the number of clusters

Since it is difficult to obtain a priori information regarding
the number of clusters in a dermoscopic image, in our model
the SD validity index is used to automatically determine the
number of clusters. The SD value can be calculated using Eq. (5).
) Manual, border, (c) k-means, (d) FCM and (e) Our method.



Table 1
Statistics of clustering performance: mean (standard deviation).

Cluster method
k-means FCM ACluster-GA-SGNN

Cluster measure SJ SM SJ SM SJ SM

Caucasian race 0.834 (0.107) 0.410 (0.153) 0.776 (0.142) 0.493 (0.200) 0.826 (0.117) 0.425 (0.166)
Xanthous race 0.771 (0.168) 0.493 (0.279) 0.759 (0.194) 0.512 (0.262) 0.784 (0.152) 0.478 (0.278)

Table 2
Results of validity indices for the caucasian race dataset.

Actual number

of clusters

Number of

tested images

DB

index

Dunn’s

index

SD

index

2 66 66 66 57
3 57 2 5 35
4 2 0 0 1
Total 125 68 71 93

Table 3
Results of validity indices for the xanthous race dataset.

Actual number

of clusters

Number of tested

images

DB index Dunn’s index SD index

2 108 102 102 90
3 71 5 6 47
4 2 0 0 2
Total 181 107 108 139
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The minimum number of clusters is 2, and the maximum is 4.
The weighting factor a, does not work well when set to DisðcmaxÞ

as in [27], and is instead fixed at a¼ 3DisðcmaxÞ. Performance is
analyzed using three validity indices, including the DB index,
Dunn’s index, and the SD index. For the tested image, the actual
number of clusters is obtained visually as ground truth, and the
results delivered by the validity indices is given in Tables 2 and 3.

Compared to DB and Dunn’s indices, the SD index works well
for 2–4 clusters, with correctness rate are 74.4% and 76.8% for the
caucasian and the xanthous dataset respectively. Although the SD
index is better suited for determining the number of clusters in
dermoscopic images, it is clear that research on clustering validity
is merited.

4.3. Experiment 3: Segment evaluation on ASegment-GA-SGNN

The otherwise convenient SGNN algorithm is sensitive to the
order of input of the training samples, often yielding inconsistent
results. GA is employed in our model to optimize SGNN cluster-
ing. In the post-processing phase, the segmentation is completed
by merging the clustering regions into background skin and lesion
objects. To evaluate segmentation performance, ASegment-GA-
SGNNN is compared with the other automatic segmentation
methods used on dermoscopic images, including Otsu’s thresh-
olding method, k-means, fuzzy c-means and SRM [7,32]. Fig. 8
shows a group of segmentation instances with the above algo-
rithms, where the blue line is a manually inscribed border and the
red line is the automatically determined border. The first two
rows are xanthous race images and the last two rows are
caucasian race images. It can be seen, when the lesion object
has no uniform color, and weak contrast between the lesion and
its surrounding skin, our method yields more accurate segmenta-
tion result. In Fig. 8, the third segmentation case for SRM
(indicated by the blue line) is unsuccessful because of the weak
contrast.

Segmentations were scored using the XOR metric [33], Haus-
dorff distance [34], and Jaccard similarity coefficient [31]. Let A be
the ground truth and B the automatic segmentation result, then
the XOR and Jaccard measures are given by

XOR¼
AreaðA [ BÞ�AreaðA \ BÞ

AreaðAÞ
ð9Þ

Jaccard¼
AreaðA \ BÞ

AreaðA [ BÞ
ð10Þ

AreaðIÞ denotes the number of pixels in the binary image I.
Let borderA and borderB be the border pixels of A and B

respectively, then the Hausdorff distance is defined as

HðA,BÞ ¼maxðhðA,BÞ,hðB,AÞÞ ð11Þ

where

hðA,BÞ ¼ max
aAborderA

min
bAborderB

Ja�bJ ð12Þ

and JUJ is the Euclidean distance between two pixel points.
For XOR and Hausdorff distance, the lower the value, the better

the segmentation result, whereas, a higher value of Jaccard
similarity coefficient indicates a better segmentation result.
Tables 4 and 5 give the results for the two datasets respectively.
For SRM, there are two unsuccessful cases on the caucasian race
dataset because of the weak contrast (see Fig. 8), and the
statistical result for SRM in Table 4 excludes the unsuccessful
cases. It can be seen that our method achieves the most accurate
segmentation result among the automatic methods on both two
datasets. The segmentation accuracy for the caucasian race
dataset is better than the xanthous race dataset, probably because
the images in the caucasian dataset have higher image quality
than the xanthous dataset.

Computation time is also important for evaluating algorithms.
For the two datasets, the computational time for the 5 segmenta-
tion methods was recorded in Table 6. Our model requires more
time than the other methods, because of two reasons: GA needs a
lot of time to search the resolution space, and the number of
clusters needs to be determined. However, when the number of
clusters is specified (as in k-means and FCM), our model only
requires about 3.1 s for the caucasian and 4.0 s for the xanthous
datasets.
5. Conclusion

We developed a model for the automatic segmentation of
dermoscopic images based on a combination of SGNN and GA.
SGNN is a competitive learning neural network which features
simplicity in network design, fast learning and automatic organi-
zation capability. However, conventional SGNN is sensitive to the
input order of the training samples, often delivering inconsistent
cluster partitions. To optimize the clustering result GA is com-
bined with SGNN in our model. SGNN is generalized from SGNT to
SGNF, then a group of optimal seed samples is selected by GA.
These seeds are used by SGNN to generate an optimal clustering
partitioning of the dermoscopy images. The clustering regions can
be used to analyze the color and texture of lesions; and they can



Fig. 8. Group of segmentation instances by automatic methods. The column from (a) to (f) is the original image, Otsu’s threshold, k-means, FCM, SRM, and ASegment-GA-

SGNN respectively.

Table 4
Statistics (%): mean(standard deviation) for the caucasian dataset.

Method Otsu’s threshold k-means FCM SRM Our method

XOR 20.3(13.2) 17.6(11.8) 19.4(13.0) 17.5(17.1) 15.0(9.6)

Hausdorff distance 49.9(42.4) 41.6(34.7) 53.2(41.5) 49.8(45.7) 43.0(41.2)

Jaccard index 79.8(13.2) 82.5(11.7) 80.9(12.8) 83.8(13.2) 85.5(9.2)

Table 5
Statistics (%): mean(standard deviation) for the xanthous dataset.

Method Otsu’s threshold k-means FCM SRM Our method

XOR 23.4(14.3) 23.3(14.1) 25.1(17.3) 23.7(19.4) 20.7(14.1)

Hausdorff distance 65.4(53.2) 65.1(53.6) 67.5(56.0) 74.3(57.8) 56.1(42.9)

Jaccard index 72.2(12.9) 77.5(12.6) 76.8(12.5) 79.6(14.0) 80.3(12.4)

Table 6
Computation time (s).

Method Otsu’s threshold k-means FCM SRM Our method

Caucasian race 0.3 0.8 1.3 0.2 9.3

Xanthous race 0.7 (0.6) 1.3 1.9 0.4 12.1
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also be used to extract the lesion border, which is important for
skin cancer diagnosis. The post-processing in our model entails
merging the clustered regions into background skin and lesion
objects, yielding a complete segmentation from which the border
can be extracted. The overall ASegment-GA-SGNN model con-
ducts an automatic and complete segmentation without manual
interaction, and delivers more accurate segmentations as com-
pared with other automatic methods.

Because of the complexity of skin lesions, it is difficult to
obtain a priori information about the number of clusters in
dermoscopy images. In the clustering phase, the SD validity index
is used to automatically determine the number of clusters.
Although the SD index is quite adaptable compared with two
other popular indices, the error can still be large (25.6%for the
caucasian and 23.2% for xanthous in our experiments). Clearly,
more research is needed towards developing better cluster
validity indices for dermoscopy images.
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